© Springer-Verlag 1994

Double even tempering of orbital exponents: Application to Roothaan–Hartree–Fock calculations for He through Xe in Slater-type basis sets

Toshikatsu Koga¹, Hiroshi Tatewaki², Ajit J. Thakkar³

¹ Department of Applied Chemistry, Muroran Institute of Technology, Muroran, Hokkaido 050, Japan

² Computation Center, Nagoya City University, Nagoya, Aichi 468, Japan

³ Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E2

Received July 14, 1993 / Accepted October 6, 1993

Summary. Double even tempering (DET) of orbital exponents is proposed as a useful generalization of even tempering (ET). The DET scheme uses two sets of basis functions for each angular momentum. The two sets have different principal quantum numbers and their exponents are generated by two different geometric sequences. Roothaan-Hartree-Fock (RHF) calculations on the atoms from He through Xe using both ET and DET Slater-type basis sets of the same size are carried out to demonstrate the substantial improvement offered by the DET scheme. The DET scheme reduces the maximum deviation of the RHF energies relative to the Hartree-Fock limit from 1.4 to 0.3 millihartrees.

Key words: Doubly even tempered wavefunctions – Slater-type basis functions – Atoms He through Xe

1 Introduction

Even tempering is a method for reducing the number of nonlinear parameters required to specify a basis set. The simplest realization of this idea arises in the construction of one-particle basis sets [1-8] for electronic structure calculations. For example, if an orbital basis set contains M_l Slater-type functions (STFs) corresponding to the angular momentum quantum number l, then the unnormalized radial parts of the STFs are taken to be $r^l \exp(-\zeta_{li}r)$ with the exponents in a geometric sequence $\zeta_{li} = \alpha_l \beta_l^i$ defined by the two nonlinear parameters α_l and β_l .

Two practical advantages of the even tempering procedure are immediately evident. The number of nonlinear parameters that need to be variationally optimized is reduced from M_l to 2 for each symmetry resulting in a substantial reduction of computational effort. Moreover, when the basis set needs to be extended with tighter functions for calculations of, say, the electric field gradient at the nucleus or more diffuse functions for polarizabilities, then the geometric sequence provides an unambiguous recipe for the choice of the added functions. Even tempering also carries a penalty. It requires approximately one extra function of each symmetry to achieve an accuracy comparable to that of a fully optimized basis set [9, 10]. This shortcoming can be ameliorated by using more nonlinear parameters per symmetry. One such method is the well tempered (WT) scheme [11–14] where a more complex relationship, with four nonlinear parameters, is used to specify the orbital exponents.

We have recently suggested that two geometric sequences be used for each symmetry [10]. We shall refer to this idea as double even tempering. The purpose of this paper is to demonstrate the power of this scheme. This is achieved by comparing Roothaan-Hartree-Fock (RHF) energies for all atoms from He through Xe using fully optimized, even tempered (ET), and double even tempered (DET) STF basis sets of the same size. Most of the energy loss in the ET sets is recovered by the DET sets, and the DET wavefunctions are satisfactory approximations to the Hartree-Fock (HF) limit. Hartree atomic units are used throughout.

2 Double even tempering

The exponents of the radial functions in a double even tempered basis set are given by two independent geometric sequences for each angular momentum [10]. Thus,

$$\zeta_{ll} = \begin{cases} \alpha_l \beta_l^i & \text{for } i = 1, 2, \cdots, K_l, \\ \bar{\alpha}_l \bar{\beta}_l^{i-K_l} & \text{for } i = K_l + 1, K_l + 2, \cdots, M_l. \end{cases}$$
(1)

The original even tempered scheme corresponds to using only the first geometric sequence with $K_l = M_l$. Equation (1) does not specify the DET scheme uniquely. Two more items need to be specified to obtain a unique prescription: the apportioning parameter K_l and the principal quantum numbers *n* of the basis functions generated by the two geometric series.

We assign the two sequences essentially equal weight by setting $K_l = int[(M_l \pm 1)/2]$ where int represents the integer part. Thus, if we have an even number of basis functions they are divided equally between the two series, and if we have an odd number the first series is assigned one function more or less than the second series.

We performed preliminary calculations [10] on the xenon atom to determine an appropriate method for assigning the principal quantum numbers n. One method is to use the same n = l + 1 quantum numbers for both series. In this case, the DET exponents simply form two different ET sequences. This allows for different distributions of small and large exponents. Another method is to let

$$n = \begin{cases} l+1 & \text{for } i = 1, 2, \cdots, K_l, \\ l+j & \text{for } i = K_l + 1, K_l + 2, \cdots, M_l, \end{cases}$$
(2)

where j = 2 for STFs and j = 3 for Gaussian-type functions (GTFs). An odd j is necessary to preserve the simplicity of multicenter integrals for GTFs. Using two values of n for each l should reduce numerical linear dependence problems. DET calculations on Xe using 13s12p8d STFs gave an energy of -7232.1380 when the same n = l + 1 quantum numbers were used for both sequences, and an energy of -7232.1382 when Eq. (2) was used. By way of comparison, the WT scheme applied to a STF basis of the same size led to an energy of -7232.1380 for Xe. We expect Eq. (2) to be the more stable scheme in general and therefore adopted it.

Ζ	Atom		Present RH	F	Numerical HF
		STFs	ET	DET	-
2	He (¹ S)	4 <i>s</i>	0.0001	0.0001	2.8616800
3	Li (^2S)	7 <i>s</i>	0.0010	0.0003	7.4327269
4	Be (^{1}S)	7 <i>s</i>	0.002	0.000	14.573023
5	$\mathbf{B}(\mathbf{P})$	7s5p	0.002	0.000	24.529061
6	$C(^{3}P)$	7s5p	0.004	0.000	37.688619
7	N (4S)	7s5p	0.006	0.001	54.400934
8	$O(^{3}P)$	7s5p	0.008	0.001	74.809398
9	$\mathbf{F}(\mathbf{P})$	7s5p	0.013	0.002	99.409349
10	Ne (^{1}S)	7s5p	0.02	0.01	128.54710
11	Na (^2S)	10s5p	0.04	0.00	161.85891
12	$Mg(^{1}S)$	10s5p	0.05	0.01	199.61464
13	$Al(^{2}P)$	10s8p	0.03	0.01	241.87671
14	$Si(^{3}P)$	10s8p	0.02	0.00	288.85436
15	$P(^{4}S)$	10s8p	0.03	0.01	340.71878
16	$S(^{3}P)$	10s8p	0.07	0.01	397.50490
17	$\hat{Cl}(^{2}\hat{P})$	10s8p	0.06	0.01	459,48207
18	$Ar(^{1}S)$	10s8p	0.06	0.02	526.81751
19	\mathbf{K} (² S)	11s7p	0.15	0.06	599.16479
20	$Ca(^{1}S)$	11s7p	0.16	0.04	676.75819
21	$Sc(^{2}D)$	11s7p5d	0.17	0.04	759.73572
22	Ti (³ F)	11s7p5d	0.19	0.05	848,40600
23	$V(^{4}F)$	11s7p5d	0.21	0.06	942.88434
24	$Cr(^7S)$	11s7p5d	0.4	0.1	1043.3564
25	Mn (⁶ S)	11s7p5d	0.3	0.1	1149.8663
26	$Fe(^{5}D)$	11s7p5d	0.4	0.1	1262.4437
27	$Co(^4F)$	11s7p5d	0.5	0.1	1381.4146
28	Ni $({}^{3}F)$	11s7p5d	0.6	0.1	1506.8709
29	$Cu(^2S)$	11s7p5d	0.8	0.1	1638.9637
30	Zn (¹ S)	11s7p5d	0.6	0.1	1777.8481
31	Ga (² P)	11s10p5d	0.5	0.1	1923.2610
32	$Ge(^{3}P)$	11s10p5d	0.4	0.0	2075.3597
33	As (⁴ S)	11s10p5d	0.5	0.1	2234.2387
34	Se (^{3}P)	11s10p5d	0.5	0.1	2399.8676
35	$Br(^{2}P)$	11s10p5d	0.6	0.0	2572.4413
36	Kr (¹ S)	11s10p5d	0.7	0.1	2752.0550
37	Rb (² S)	13s10p5d	0.8	0.2	2938.3575
38	Sr (¹ S)	13s10p5d	0.6	0.2	3131.5457
39	Y (² D)	13s10p8d	0.5	0.1	3331.6842
40	Zr (³ F)	13s10p8d	0.5	0.1	3538.9951
41	Nb (⁶ D)	13s10p8d	0.5	0.1	3753.5977
42	Mo (⁷ S)	13s10p8d	0.6	0.1	3975.5495
43	Tc (⁶ S)	13s10p8d	0.6	0.1	4204.7887
44	Ru (⁵F)	13s10p8d	0.9	0.1	4441.5395
45	Rh (4F)	13s10p8d	1.1	0.1	4685.8817
46	Pd (^{1}S)	13s10p8d	0.6	0.1	4937.9210
47	Ag (^{2}S)	13s10p8d	1.4	0.2	5197.6985
48	$Cd(^{1}S)$	13s10p8d	1.1	0.1	5465.1331
49	$ \lim_{n \to \infty} (^2\mathbf{P}) $	13s12p8d	1.1	0.3	5740.1692
50	Sn (^s P)	13s12p8d	0.8	0.2	6022.9317
51	Sb (*S)	13s12p8d	0.7	0.3	6313.4854
52	Te (°P)	13s12p8d	0.7	0.3	6611.7841
53	I (*P)	13s12p8d	0.6	0.2	6917.9809
54	Xe (*S)	13s12p8d	0.6	0.2	7232.1384

Table 1. Deviations, in millihartrees, of the ET and DET energies from the numerical HF limits [15, 19](listed in Hartrees with sign reversed)

Table 2.	Parameters (of the even	-tempered wave	functions. The nur	nber of STI	rs and the tempe	ering parameters	are shown f	or each atom	
Z	Atom		15			2 <i>p</i>			3d	
		STFs	×	β	STFs	α	β	STFs	ø	β
7	He (¹ S)	4	0.853931	1.660897						
ŝ	$Li (^2S)$	7	0.345201	1.629013						
4	Be (^{1}S)	7	0.445689	1.668493						
S	B (² P)	7	0.581288	1.665156	5	0.552688	1.608452			
9	$C (^{3}P)$	7	0.705082	1.669878	5	0.671226	1.617303			
7	N (⁴ S)	7	0.824096	1.675504	5	0.780901	1.628541			
8	$O\left(^{3}P\right)$	7	0.948453	1.677177	5	0.814568	1.678221			
6	$F(^{2}P)$	7	1.068944	1.679954	5	0.874133	1.709478			
10	Ne (^{1}S)	7	1.187022	1.683000	5	0.945942	1.730277			
11	Na (² S)	10	0.325220	1.644321	5	1.317132	1.650091			
12	Mg (¹ S)	10	0.409381	1.612599	5	0.921399	1.811172			
13	Al (^{2}P)	10	0.527799	1.574138	8	0.412654	1.709027			
14	Si (³ P)	10	0.630704	1.552240	×	0.521586	1.665916			
15	P (⁴ S)	10	0.727880	1.537258	8	0.618595	1.646136			
16	S (³ P)	10	0.820373	1.526730	8	0.642315	1.680945			
17	$CI (^{2}P)$	10	1.000253	1.411522	×	0.797830	1.461041			
18	Ar (¹ S)	10	1.099655	1.404911	8	0.875358	1.456449			
19	K (² S)	11	0.322860	1.498530	7	1.103242	1.452497			
20	Ca (¹ S)	11	0.385183	1.479596	7	1.288802	1.430768			
21	Sc (^{2}D)	11	0.405090	1.479987	7	1.383761	1.426314	s	0.651504	1.815745
22	Ti (³ F)	Π	0.420420	1.481960	7	1.477400	1.423204	S	0.756204	1.782576
23	V (⁴ F)	11	0.434908	1.483990	7	1.569113	1.420983	5	0.820930	1.779068
24	$Cr(^{7}S)$	11	0.439244	1.489215	7	1.562955	1.433423	5	0.663143	1.906257
25	(S ⁸) nM	11	0.461452	1.488181	٢	1.747304	1.418486	5	0.930974	1.783557
26	$Fe(^{5}D)$	11	0.476549	1.489389	7	1.829350	1.418423	5	0.933319	1.813631
27	$Co (^4F)$	11	0.490253	1.490881	7	1.911188	1.418585	5	0.956658	1.830643
28	Ni (³ F)	11	0.503317	1.492413	7	1.992054	1.418990	5	0.984353	1.843832

276

1.863712	1.837883	1.788412	1.735692	1.695311	1.658888	1.624161	1.575997	1.692219	1.663517	1.653666	1.636927	1.620167	1.597084	1.513825	1.573468	1.559080	1.534805	1.487797	1.491450	1.465200	1.451809	1.444387	1.439028	1.435778	1.433330
0.526252	0.602339	1.305895	1.552925	1.790550	2.029878	2.259270	2.475762	1.935388	2.101756	0.529324	0.583804	0.643077	0.717245	0.908435	0.823694	0.882368	0.704117	0.937901	1.155971	1.310075	1.434274	1.540856	1.641257	1.733353	1.820593
5	5	5	5	5	5	5	5	5	S	8	8	8	8	8	80	8	æ	8	8	8	×	×	8	8	œ
1.432099	1.420286	1.503318	1.478126	1.458876	1.455727	1.448119	1.439473	1.411427	1.431049	1.419988	1.413214	1.405736	1.398749	1.396065	1.390534	1.386425	1.387661	1.378602	1.375400	1.456939	1.440002	1.426893	1.423652	1.417766	1.411310
1.972417	2.151532	0.488979	0.581983	0.671821	0.709228	0.766792	0.833000	1.009937	0.933071	1.026499	1.100816	1.181932	1.266884	1.326261	1.407139	1.481768	1.514253	1.637339	1.714553	0.514895	0.596339	0.672910	0.704534	0.753015	0.808964
7	7	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	12	12	12	12	12	12
1.458094	1.449484	1.431852	1.418649	1.407808	1.399592	1.392420	1.386042	1.474949	1.462240	1.457880	1.456293	1.451913	1.451510	1.455052	1.454807	1.456545	1.339474	1.459893	1.454746	1.440810	1.430673	1.422308	1.415615	1.409715	1.404298
0.482904	0.533550	0.633197	0.725878	0.816500	0.898657	0.980206	1.061633	0.346183	0.395344	0.420801	0.437470	0.465178	0.478243	0.475356	0.487143	0.490616	1.778062	0.497055	0.530291	0.609498	0.677250	0.740782	0.798602	0.854821	0.911055
11	11	11	11	11	11	11	11	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
Cu (² S)	Zn (¹ S)	Ga (² P)	Ge (³ P)	As (⁴ S)	Se (³ P)	$Br (^{2}P)$	Kr (¹ S)	Rb (² S)	Sr (¹ S)	$Y (^2D)$	Zr (³ F)	(D) dN	Mo (⁷ S)	$Tc (^{6}S)$	Ru (⁵ F)	Rh (⁴ F)	$Pd(^{1}S)$	Ag (² S)	$Cd (^{1}S)$	In (^{2}P)	Sn (³ P)	Sb (⁴ S)	Te (³ P)	I (² P)	Xe (¹ S)
29	30	31	32	33	34	35	36	37	38	39	1 0	41	42	43	4	45	46	47	48	4 9	50	51	52	53	54

Table 3. and 3 <i>d</i> ,	Parameters o and the secon	f the doubl d line shov	y even-tempered ws those for 2s, 3	wavefunctions. For a p, and 4d	or each aton	n, the first line sh	ows the number of !	STFs and ti	he tempering pa	trameters for $1s, 2p$,
Z	Atom		1 <i>s</i> /2	S		2p/3	d		3d/4	1
		STFs	$\alpha/\overline{\alpha}$	$\beta/\overline{\beta}$	STFs	$lpha/ar{lpha}$	β/\overline{eta}	STFs	α/\overline{lpha}	$\beta/\overline{\beta}$
5	He (¹ S)	2	0.838997	2.235436						
		2	0.567170	2.715026						
ę	Li (² S)	ŝ	0.201223	2.754677						
		4	0.297461	2.221885						
4	Be (¹ S)	з	0.269896	2.752445						
		4	0.397285	2.238930						
5	B (² P)	4	0.444482	2.181367	ŝ	0.498820	2.265164			
		ω.	1.084840	2.324550	7	0.391023	2.342989			
9	$C (^{3}P)$	4	0.547713	2.168485	e,	0.618294	2.260144			
		ε	1.279669	2.340137	7	0.471184	2.360569			
٢	N (⁴ S)	4	0.646363	2.160156	ŝ	0.721102	2.269130			
		ŝ	1.531871	2.224782	7	0.547338	2.359939			
8	0 (³ P)	4	0.753356	2.127735	б	0.728332	2.361853			
		ŝ	1.685721	2.145690	7	0.572575	2.371659			
. 6	$F(^{2}P)$	ব	0.881716	2.037851	ę	0.850628	2.339424			
		ŝ	1.685446	2.185415	6	0.635951	2.409075			
10	Ne (¹ S)	4	0.997985	1.990896	ŝ	0.963963	2.344752			
		£	1.713280	2.249577	2	0.692635	2.463367			
11	Na (² S)	5	0.525628	2.128889	ę	0.434748	2.859692			
		5	0.255850	2.453826	7	0.853406	3.017753			
12	$Mg (^{1}S)$	5	0.616367	2.099007	ŝ	0.535737	2.770420			
		5	0.321485	2.398906	7	1.087917	2.843641			
13	Al (² P)	S	0.331828	2.495270	4	0.467640	2.320692			
		S.	0.226302	2.634095	4	0.335399	2.370336			
14	Si (³ P)	5	0.619292	1.804947	4	0.541250	2.278270			
		S.	0.544805	2.001513	4	0.416707	2.287103			
15	P (⁴ S)	5	0.740546	1.774720	4	0.560992	2.289565			

278

											2.842157	2.931126	2.753630	2.843395	2.719114	2.814500	2.921641	3.089189	2.682924	2.801409	2.710382	2.853943	2.718966	2.885265	2.722440	2.909724	2.858931	2.120455	2.713728	2.933952	2.595404	2.789893	2.514996	2.689603
											0.395798	0.759711	0.464047	0.871878	0.506764	0.941441	0.402298	0.754811	0.576125	1.048055	0.575073	1.039522	0.586792	1.050532	0.601903	1.067126	0.505526	0.894305	0.643237	1.119471	0.790313	1.350622	0.918988	1.554730
											ę	2	ŝ	2	б	2	n	2	ŝ	2	ę	2	3	7	ŝ	7	£	7	ъ	2	З	2	3	2
2.252622	2.303992	2.271607	2.308057	2.269498	2.290215	2.252524	2.568394	2.704226	2.636164	2.669519	2.593999	2.639061	2.517206	2.593128	2.444905	2.549116	2.222019	2.379155	2.269691	2.427358	2.226728	2.390480	2.207001	2.373438	2.195859	2.363531	2.210151	2.369901	2.188754	2.358757	2.298520	2.436715	2.179016	2.330193
0.470888	0.603784	0.504179	0.632592	0.539737	0.671623	0.581532	0.423241	0.762203	0.426994	0.876265	0.478950	0.962061	0.556665	1.060467	0.643489	1.164635	0.908284	1.431557	0.897435	1.444217	1.003447	1.581529	1.085170	1.696716	1.156986	1.803310	1.189212	1.885912	1.279268	1.993175	0.506939	0.332643	0.655285	0.419192
4	4	4	4	4	ব	4	4	ŝ	4	ŝ	4	ŝ	4	ŝ	4	ŝ	4	ŝ	4	ŝ	4	З	4	б	4	ŝ	4	÷	4	ŝ	5	S	5	S
1.973730	1.655977	1.940722	1.666337	1.932401	1.694865	1.931334	2.000847	2.372677	1.960663	2.292085	1.974600	2.305920	1.994871	2.329700	2.013907	2.354600	2.186795	2.032059	2.161983	2.007175	2.168805	2.011879	2.176965	2.017929	2.185535	2.024814	1.970310	2.549492	2.201807	2.039086	2.123666	1.976472	2.074871	1.938663
0.632314	1.104819	0.734512	1.165507	0.809323	1.164877	0.874110	0.485082	0.229805	0.553049	0.282771	0.578299	0.294765	0.597810	0.301818	0.616390	0.307654	0.267775	0.752099	0.293760	0.821580	0.300878	0.848801	0.306813	0.873073	0.312259	0.895149	0.947925	0.302490	0.321927	0.932911	0.407384	1.113756	0.479608	1.258019
S	5	5	5	5	5	5	9	5	9	5	9	5	9	5	9	5	9	5	9	5	9	5	9	5	9	5	9	5	9	5	9	5	9	5
	S (³ P)		CI (² P)		Ar (¹ S)		K (² S)		Ca (¹ S)		$Sc (^{2}D)$		Ti (³ F)		$V (^4F)$		Cr (7S)		Mn (⁶ S)		Fe (^{5}D)		Co (⁴ F)		Ni (³ F)		Cu (² S)		Zn (¹ S)		Ga (² P)		$Ge (^{3}P)$	
	16		17		18		19		20		21		22		23		24		25		26		27		28		29		30		31		32	

											- 1
N	Atom		1s/2	15		2 <i>p</i> /3	đ		3d/4d		
		STFs	α/ᾶ	β/ <u>β</u>	STFs	α/ā	$\beta/\bar{\beta}$	STFs	α/ᾶ	₿/₿	1
33	As (⁴ S)	. 9	0.547094	2.037066	5	0.783315	2.108459	۳ س	1.007470	2.475908	1
		5	1.394060	1.907868	S	0.496739	2,264367	7	1.698097	2.641822	
34	Se (³ P)	9	0.610416	2.010319	5	0.814390	2.111119	÷	1.044832	2.470363	
		5	1.506983	1.890084	5	0.524433	2.261090	7	1.776293	2.626519	
35	Br (^{2}P)	9	0.666638	1.989354	5	1.126036	1.952725	÷	1.083893	2.464036	
		5	1.538959	1.892348	5	0.587917	2.198730	7	1.868985	2.602018	
36	$Kr (^{1}S)$	9	0.734557	1.960283	5	1.232375	1.926692	÷	1.073002	2.488579	
		5	1.746261	1.848324	5	0.639230	2.175650	7	1.887080	2.615180	
37	Rb (² S)	7	0.192199	2.173035	5	1.352552	1.821582	e	1.124639	2.474955	
		9	0.529113	2.054960	5	0.805331	1.949498	7	1.976428	2.599892	
38	$Sr(^{1}S)$	7	0.248276	2.121308	5	1.337081	1.834413	ę	1.161848	2.470899	
		9	0.657141	2.007537	S	0.914668	1.909865	7	2.039050	2.599967	
39	Y (² D)	7	0.257436	2.121988	5	1.364491	1.833646	4	0.619864	2.335535	
		9	0.682440	2.007340	5	0.939289	1.906194	4	0.439043	2.405498	
40	$Zr (^{3}F)$	7	0.268006	2.113365	5	1.462577	1.825137	4	0.667439	2.319525	
		9	0.709817	1.999312	5	0.995099	1.903101	4	0.486178	2.373948	
41	(Q ₉) qN	7	0.274096	2.111115	5	1.611951	1.801454	4	0.709355	2.297554	
		9	0.726951	1.997189	5	1.053925	1.894121	4	0.493783	2.383498	
42	Mo (⁷ S)	7	0.280813	2.111254	5	1.652220	1.803522	4	0.724320	2.305839	
		9	0.743840	1.997856	5	1.129784	1.879936	4	0.523786	2.368899	
43	$Tc (^{6}S)$	7	0.288134	2.115136	5	1.699113	1.804349	4	0.740012	2.308988	
		9	0.775902	1.995778	5	1.180912	1.875164	4	0.544493	2.362411	
44	Ru (⁵ F)	7	0.279970	2.084561	5	1.942678	1.767738	4	0.765899	2.304402	
		9	0.834583	1.932268	5	1.243373	1.868434	4	0.549003	2.375767	

Table 3. (Continued)

280

45 Rh (*F) 7 0.287183 2.088192 5 2.004860 1.767370 4 0.869256 2.23657 2.45582 46 Pd (*S) 7 0.0860936 1.93581 5 1.266115 1.867856 4 0.6577834 2.368323 47 Ag (*S) 7 1.088597 1.729286 5 1.2971073 1.867856 4 0.577834 2.363323 47 Ag (*S) 7 0.283285 2.090043 5 1.2971073 1.867856 4 0.577834 2.366735 2.345702 48 Cd (*S) 7 0.283285 2.090043 5 1.400863 1.87156 4 0.52567 2.34570 48 Cd (*S) 7 0.28358 1.973661 5 1.47039 1.881078 4 0.52567 2.245702 49 In (*P) 7 0.233547 1.941083 5 1.477089 1.881078 4 0.52567 2.245702 50 7 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	45	$Rh (^{4}F)$	7	0.287183	2.088192	S	2.004860	1.767370	4	0.809256	2.292627
			9	0.860936	1.935891	5	1.286115	1.867856	4	0.577834	2.368323
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	46	Pd (¹ S)	7	1.088597	1.729286	S	1.971073	1.785851	4	0.771217	2.345587
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$			9	1.935581	1.689871	5	1.289047	1.881078	4	0.522657	2.452920
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	47	Ag (² S)	7	0.283285	2.090043	S	2.070025	1.775387	4	0.931385	2.241688
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$			9	0.739967	1.973661	5	1.400863	1.857156	4	0.656613	2.330114
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	48	$Cd (^{1}S)$	7	0.324958	2.057522	5	2.157408	1.770928	4	0.983741	2.246702
			9	0.846871	1.941083	5	1.477089	1.848646	4	0.712608	2.319764
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	49	In (² P)	7	0.386679	2.065618	9	0.638233	1.928444	4	1.088080	2.205606
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$			9	1.012085	1.951698	9	0.373491	2.047700	4	0.789332	2.280807
51 Sb (⁴ S) 7 0.898166 1.135184 1.923427 6 0.446700 1.995699 4 0.898166 2.224557 52 Te (³ P) 7 0.503351 2.002684 6 0.693246 1.916069 4 1.305634 2.133344 52 Te (³ P) 7 0.557410 1.978986 6 0.511723 1.958225 4 0.939398 2.218442 53 $I (^{2}P)$ 7 0.557410 1.978986 6 0.537452 1.950039 4 1.252896 2.172313 54 Xe (¹ S) 7 0.609349 1.957802 6 0.537452 1.950033 4 0.878880 2.277397 54 Xe (¹ S) 7 0.658448 1.942397 6 0.572892 1.996088 4 1.269183 2.176300 54 Xe (¹ S) 7 0.658448 1.942397 6 0.572894 1.9011092 4 1.269183 2.176300 54 Xe (¹ S) 7 0.658448 1.942397 6 0.572894 1.911092 4 1.266183 2.176300 54 Xe (¹ S) 7 0.658448 1.942397 6 0.572894 1.9101992 4 1.286042 2.186275 54 Xe (¹ S) 7 0.658448 1.942397 6 0.572894 1.9101992 4 2.277297 2.277297	50	Sn (³ P)	7	0.447083	2.031309	9	0.672903	1.918912	4	1.234157	2.148160
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			9	1.135184	1.923427	9	0.446700	1.995699	4	0.898166	2.224557
$ \begin{array}{lcccccccccccccccccccccccccccccccccccc$	51	Sb (⁴ S)	7	0.503351	2.002684	9	0.693246	1.916069	4	1.305634	2.133344
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$			9	1.248401	1.899558	9	0.511723	1.958225	4	0.939398	2.218442
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	Te (³ P)	L	0.557410	1.978986	9	0.722696	1.910039	4	1.252896	2.172313
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9	1.355911	1.879692	9	0.537452	1.950033	4	0.878880	2.273432
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	53	$I (^{2}P)$	7	0.609349	1.957802	9	0.739978	1.909187	4	1.269183	2.176300
54 Xe (¹ S) 7 0.658448 1.942397 6 0.722945 1.911092 4 1.286042 2.186275 6 1.556669 1.848450 6 0.607254 1.925597 4 0.917964 2.277813			9	1.458308	1.861806	9	0.572892	1.936508	4	0.891512	2.277297
6 1.556669 1.848450 6 0.607254 1.925597 4 0.917964 2.277813	54	Xe (¹ S)	7	0.658448	1.942397	9	0.752945	1.911092	4	1.286042	2.186275
			9	1.556669	1.848450	9	0.607254	1.925597	4	0.917964	2.277813

More complicated choices of n could be made but the simplicity of Eq. (2) appeals to us.

We examined the DET scheme defined by Eqs. (1) and (2) by performing RHF calculations on the ground states of all atoms from He through Xe. We choose STF basis sets of precisely the same size as those used by Bunge et al. [15] who were able to effectively reach the HF limit by complete optimization of the exponents and partial optimization of the principal quantum numbers. We also constructed conventional ET wavefunctions in STF basis sets of the same size for the purposes of comparison.

All calculations were carried out using our corrected and modified version [16] of Pitzer's program [17]. The tempering parameters were variationally optimized using the method of conjugate directions [18]. In all cases, the optimization was sufficiently thorough to ensure that the virial ratio was $-2 \pm 1 \times 10^{-7}$.

3 Results and discussion

Table 1 lists the deviations of our ET and DET energies from the HF limit, and the RHF energies obtained by Bunge et al. [15] using fully optimized STF basis sets of the same size. Their RHF energies coincide with numerical HF energies [15, 19] to the number of figures listed. Table 1 shows that the ET energies do not differ from the HF limits by more than 0.02, 0.07, 0.8, and 1.4 millihartrees, respectively, for first-, second-, third-, and fourth-row atoms. The ET energies are similar to, or lower than, the benchmark results obtained by Clementi and Roetti [20] with slightly smaller but fully optimized basis sets. Our results are testimony to the effectiveness of the ET method despite its limited variational freedom. For example, in Xe the ET method reduces the optimization problem from 33 STF exponents to just 6 nonlinear parameters. The tempering parameters are listed in Table 2.

The ET method is weakest for atoms which contain both very tight and diffuse atomic orbitals (AOs) of the same symmetry. For example, the largest deviation from the HF limit is found in Ag where there is a very tight 1s AO and a very diffuse 5s AO. It appears that a single geometric series does not generate an s-basis flexible enough to describe accurately both these AOs.

The DET method improves the results for such atoms very markedly, as shown in Table 1. The DET energies are within 0.01, 0.02, 0.1, and 0.3 millihartrees, respectively, of the HF limits for the first-, second-, third-, and fourth-row atoms. All the DET orbital energies were found to be very close to the HF limit values [19]. The DET wavefunctions are, in our opinion, excellent analytical approximations to the HF wavefunctions. The tempering parameters are listed in Table 3.

The success of the DET scheme is due to its increased variational flexibility relative to the ET scheme. The use of two sequences of exponents permits an optimal distribution of both small and large exponents. The use of two principal quantum numbers increases the numerical linear independence of the basis set. The increased flexibility comes at the expense of doubling the number of nonlinear parameters relative to the original ET method. Even so, the DET scheme is computationally far less demanding than full optimization for heavier atoms.

The WT scheme [11-14] has 4 nonlinear parameters just as the DET scheme does. Since the WT exponent formula depends explicitly on M_l , the number of basis functions in the symmetry l, it is not clear how to extend the original basis set to include more diffuse or tight functions when required. The ET and DET schemes do not share this M_l dependence, allowing an ET or DET basis to be augmented by extra diffuse or tight functions more easily. We also note that the WT scheme was designed mainly to improve the distribution of larger exponents in GTF basis sets. An application of the DET scheme to Gaussian basis sets would be interesting.

Acknowledgments. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education of Japan and in part by the Natural Sciences and Engineering Research Council of Canada.

References

- 1. Reeves CM (1963) J Chem Phys 39:1
- Ruedenberg K, Raffenetti RC, Bardo RD (1973) in: Smith DW, McRae WB (eds) Energy, Structure, and Reactivity. Proceedings of the 1972 Boulder Summer Research Conference on Theoretical Chemistry. Wiley, New York, pp 164–169
- 3. Raffenetti RC, Reudenberg K (1973) Even-Tempered Representation of Atomic Self-Consistent-Field Wavefunctions. Ames Laboratory, Iowa State University, Iowa
- 4. Raffenetti RC (1973) J Chem Phys 59:5936
- 5. Bardo RD, Ruedenberg K (1974) J Chem Phys 59:5956
- 6. Raffenetti RC (1975) Int J Quant Chem Symp 9:289
- 7. Feller D, Ruedenberg K (1979) Theoret Chim Acta 71:23
- 8. Schmidt MW, Ruedenberg K (1979) J Chem Phys 71:3951
- 9. Feller D, Davidson ER (1990) in: Lipkowitz KB, Boyd DB (eds) Reviews in Computational Chemistry, New York, Vol. 1. VCH Publishers, pp 1-43
- 10. Koga T, Tatewaki H, Thakkar AJ (1993) Theoret Chim Acta 86:477
- 11. Huzinaga S, Klobukowski M, Tatewaki H (1985) Can J Chem 63:1812
- 12. Huzinaga S, Klobukowski M (1985) Chem Phys Lett 120:509
- 13. Huzinaga S, Klobukowski M (1986) J Mol Struct (Theochem) 135:403
- 14. Klobukowski M, Huzinaga S (1986) J Chem Phys 84:323
- 15. Bunge CF, Barrientos JA, Bunge AV, Cogordan JA (1992) Phys Rev A 46:3691
- 16. Koga T, Thakkar AJ (1993) Theoret Chim Acta 85:391
- 17. Pitzer RM (1990) QCPE Bulletin 10:14
- 18. Powell MJD (1964) Comput J 7:115
- 19. Froese-Fischer C (1977) The Hartree-Fock Method for Atoms. Wiley, New York
- 20. Clementi E, Roetti C (1974) At Data Nuc Data Tables 14:177