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Summary. Double even tempering (DET) of orbital exponents is proposed as 
a useful generalization of even tempering (ET). The DET scheme uses two sets of 
basis functions for each angular momentum. The two sets have different principal 
quantum numbers and their exponents are generated by two different geometric 
sequences. Roothaan-Hartree-Fock (RHF) calculations on the atoms from He 
through Xe using both ET and DET Slater-type basis sets of the same size are 
carried out to demonstrate the substantial improvement offered by the DET 
scheme. The DET scheme reduces the maximum deviation of the RHF energies 
relative to the Hartree-Fock limit from 1.4 to 0.3 millihartrees. 

Key words: Doubly even tempered wavefunctions - Slater-type basis functions - 
Atoms He through Xe 

1 Introduction 

Even tempering is a method for reducing the number of nonlinear parameters 
required to specify a basis set. The simplest realization of this idea arises in the 
construction of one-particle basis sets [1-8] for electronic structure calculations. 
For example, if an orbital basis set contains M~ Slater-type functions (STFs) 
corresponding to the angular momentum quantum number l, then the unnor- 
malized radial parts of the STFs are taken to be r g exp( - ~ur) with the exponents in 
a geometric sequence ~u = el/~ defined by the two nonlinear parameters ez and/~t. 

Two practical advantages of the even tempering procedure are immediately 
evident. The number of nonlinear parameters that need to be variationally opti- 
mized is reduced from M~ to 2 for each symmetry resulting in a substantial 
reduction of computational effort. Moreover, when the basis set needs to be 
extended with tighter functions for calculations of, say, the electric field gradient 
at the nucleus or more diffuse functions for polarizabilities, then the geometric 
sequence provides an unambiguous recipe for the choice of the added functions. 
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Even tempering also carries a penalty. It requires approximately one extra 
function of each symmetry to achieve an accuracy comparable to that of a fully 
optimized basis set [9, 10]. This shortcoming can be ameliorated by using more 
nonlinear parameters per symmetry. One such method is the well tempered (WT) 
scheme [11-14] where a more complex relationship, with four nonlinear para- 
meters, is used to specify the orbital exponents. 

We have recently suggested that two geometric sequences be used for each 
symmetry [10]. We shall refer to this idea as double even tempering. The purpose 
of this paper is to demonstrate the power of this scheme. This is achieved by 
comparing Roothaan-Har t ree-Fock (RHF) energies for all atoms from He 
through Xe using fully optimized, even tempered (ET), and double even tempered 
(DET) STF basis sets of the same size. Most of the energy loss in the ET sets is 
recovered by the DET sets, and the DET wavefunctions are satisfactory approx- 
imations to the Hart ree-Fock (HF) limit. Hartree atomic units are used through- 
out. 

2 Double even tempering 

The exponents of the radial functions in a double even tempered basis set are given 
by two independent geometric sequences for each angular momentum [10]. Thus, 

f~zBi for i = l ,  2 , . . . ,Kz ,  

(u = ~'21.~lfll -rz for i = Kz + 1, Kl + 2, . .- ,  Ml. (1) 

The original even tempered scheme corresponds to using only the first geometric 
sequence with Kl = Ml. Equation (1) does not specify the DET scheme uniquely. 
Two more items need to be specified to obtain a unique prescription: the appor- 
tioning parameter K~ and the principal quantum numbers n of the basis functions 
generated by the two geometric series. 

We assign the two sequences essentially equal weight by setting Kz = 
int [(Mz _ 1)/2] where int represents the integer part. Thus, if we have an even 
number of basis functions they are divided equally between the two series, and if we 
have an odd number the first series is assigned one function more or less than the 
second series. 

We performed preliminary calculations [10] on the xenon atom to determine 
an appropriate method for assigning the principal quantum numbers n. One 
method is to  use the same n =- l + 1 quantum numbers for both series. In this case, 
the DET exponents simply form two different ET sequences. This allows for 
different distributions of small and large exponents. Another method is to let 

n = { l l + l  f°r i = l ' 2 ' " " K ~ '  (2) 
+ j  for i = Kz + l, Kl + 2,. . . ,Ml, 

where j = 2 for STFs and j = 3 for Gaussian-type functions (GTFs). An odd j is 
necessary to preserve the simplicity of multicenter integrals for GTFs. Using two 
values of n for each I should reduce numerical linear dependence problems. DET 
calculations on Xe using 13s12p8d STFs gave an energy of - 7232.1380 when the 
same n = l + 1 quantum numbers were used for both sequences, and an energy of 
- 7232.1382 when Eq. (2) was used. By way of comparison, the WT scheme 

applied to a STF basis of the same size led to an energy of - 7232.1380 for Xe. We 
expect Eq. (2) to be the more stable scheme in general and therefore adopted it. 
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Table 1. Deviations, in millihartrees, of the ET and DET energies from the numerical HF limits [15, 19] 
(listed in Hartrees with sign reversed) 

Z Atom Present RHF Numerical HF 

STFs ET DET 

2 He (1S) 4s 
3 Li (2S) 7s 
4 Be (1S) 7s 
5 B (2p) 7s5p 
6 C (3p) 7s5p 
7 N (4S) 7s5p 
8 O (3p) 7s5p 
9 F (2p) 7s5p 

10 Ne (1S) 7s5p 
11 Na (2S) 10s 5p 
12 Mg (IS) 10s5p 
13 A1 (2p) 10s8p 
14 Si (3p) 10s8p 
15 P (4S) 10s8p 
16 S (ap) lOs8p 
17 C1 (2p) 10s8p 
18 Ar (1S) 10s8p 
19 K (28) l ls7p 
20 Ca (1S) 11s7p 
21 Sc (2D) 1 ls7p 5d 
22 Ti (aF) lls7p5d 
23 V (4F) lls7p5d 
24 Cr (7S) 1 ls7p5d 
25 Mn (6S) lls7p5d 
26 Fe (SD) lls7p5d 
27 Co (4F) 1 ls7p5d 
28 Ni (3F) lls7p5d 
29 Cu (2S) 1 ls7p5d 
30 Zn (1S) lls7p5d 
31 Ga (2p) llslOp5d 
32 Ge (3p) llslOp5d 
33 As ( 4 S )  llslOp5d 
34 Se (ap) llslOp5d 
35 Br (2p) llslOp5d 
36 Kr ( 1 S )  llslOp5d 
37 Rb ( 2 S )  13slOp5d 
38 Sr (1S) 13slOp5d 
39 Y (2D) 13slOpSd 
40 Zr (3F) 13slOp8d 
41 Nb (6D) 13slOp8d 
42 Mo (7S) 13s 10p 8d 
43 Tc ( 6 S )  13slOp8d 
44 Ru (SF) 13slOp8d 
45 Rh (~F) 13slOp8d 
46 Pd (aS) 13slOp8d 
47 Ag (2S) 13s 10p 8d 
48 Cd ( 1 S )  13slOp8d 
49 In (2p) 13s 12pSd 
50 Sn (3p) 13s12p8d 
51 Sb ( 4 S )  13s12p8d 
52 Te (ap) 13s12p8d 
53 I (2p) 13s12p8d 
54 Xe (IS) 13s12p8d 

0.0001 0.0001 2.8616800 
0.0010 0.0003 7.4327269 
0.002 0.000 14.573023 
0.002 0.000 24.529061 
0.004 0.000 37.688619 
0.006 0.001 54.400934 
0.008 0.001 74.809398 
0.013 0.002 99.409349 
0.02 0.01 128.54710 
0.04 0.00 161.85891 
0.05 0.01 199.61464 
0.03 0.01 241.87671 
0.02 0.00 288.85436 
0.03 0.01 340.71878 
0.07 0.01 397.50490 
0.06 0.01 459.48207 
0.06 0.02 526.81751 
0.15 0.06 599.16479 
0.16 0.04 676.75819 
0.17 0.04 759.73572 
0.19 0.05 848.40600 
0.2l 0.06 942.88434 
0.4 0.1 1043.3564 
0.3 0.1 1149.8663 
0.4 0.1 1262.4437 
0.5 0.1 1381.4146 
0.6 0.1 1506.8709 
0.8 0.1 1638.9637 
0.6 0.1 1777.8481 
0.5 0.1 1923.2610 
0.4 0.0 2075.3597 
0.5 0.1 2234.2387 
0.5 0.1 2399.8676 
0.6 0.0 2572.4413 
0.7 0.1 2752.0550 
0.8 0.2 2938.3575 
0.6 0.2 3131.5457 
0.5 0.1 3331.6842 
0.5 0.1 3538.9951 
0.5 0.1 3753.5977 
0.6 0.1 3975.5495 
0.6 0.1 4204.7887 
0.9 0.1 4441.5395 
1.1 0.1 4685.8817 
0.6 0.1 4937.9210 
1.4 0.2 5197.6985 
1.1 0.1 5465.1331 
1.1 0.3 5740.1692 
0.8 0.2 6022.9317 
0.7 0.3 6313.4854 
0.7 0.3 6611.7841 
0.6 0.2 6917.9809 
0.6 0.2 7232.1384 
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More complicated choices of n could be made but the simplicity of Eq. (2) appeals 
to us. 

We examined the DET scheme defined by Eqs. (1) and (2) by performing RHF 
calculations on the ground states of all atoms from He through Xe. We choose STF 
basis sets of precisely the same size as those used by Bunge et al. 1,15] who were able 
to effectively reach the HF limit by complete optimization of the exponents and 
partial optimization of the principal quantum numbers. We also constructed 
conventional ET wavefunctions in STF basis sets of the same size for the purposes 
of comparison. 

All calculations were carried out using our corrected and modified version [16] 
of Pitzer's program 1-17]. The tempering parameters were variationally optimized 
using the method of conjugate directions [18]. In all cases, the optimization was 
sufficiently thorough to ensure that the virial ratio was - 2 _ 1 x 10-7. 

3 Results and discussion 

Table 1 lists the deviations of our ET and DET energies from the HF  limit, and the 
RHF energies obtained by Bunge et al. [15] using fully optimized STF basis sets of 
the same size. Their RHF energies coincide with numerical HF energies [15, 19] to 
the number of figures listed. Table 1 shows that the ET energies do not differ from 
the HF limits by more than 0.02, 0.07, 0.8, and 1.4 millihartrees, respectively, for 
first-, second-, third-, and fourth-row atoms. The ET energies are similar to, or 
lower than, the benchmark results obtained by Clementi and Roetti [20] with 
slightly smaller but fully optimized basis sets. Our results are testimony to the 
effectiveness of the ET method despite its limited variational freedom. For example, 
in Xe the ET method reduces the optimization problem from 33 STF exponents to 
just 6 nonlinear parameters. The tempering parameters are listed in Table 2. 

The ET method is weakest for atoms which contain both very tight and diffuse 
atomic orbitals (AOs) of the same symmetry. For example, the largest deviation 
from the HF limit is found in Ag where there is a very tight ls AO and a very diffuse 
5s AO. It appears that a single geometric series does not generate an s-basis flexible 
enough to describe accurately both these AOs. 

The DET method improves the results for such atoms very markedly, as shown 
in Table 1. The DET energies are within 0.01, 0.02, 0.1; and 0.3 millihartrees, 
respectively, of the HF limits for the first-, second-, third-, and fourth-row atoms. 
All the DET orbital energies were found to be very close to the HF limit values 
[19]. The DET wavefunctions are, in our opinion, excellent analytical approxima- 
tions to the HF wavefunctions. The tempering parameters are listed in Table 3. 

The success of the DET scheme is due to its increased variational flexibility 
relative to the ET scheme. The use of two sequences of exponents permits an 
optimal distribution of both small and large exponents. The use of two principal 
quantum numbers increases the numerical linear independence of the basis set. The 
increased flexibility comes at the expense of doubling the number of nonlinear 
parameters relative to the original ET method. Even so, the DET scheme is 
computationally far less demanding than full optimization for heavier atoms. 

The WT scheme 1-11-14] has 4 nonlinear parameters just as the DET scheme 
does. Since the WT exponent formula depends explicitly on Mr, the number of basis 
functions in the symmetry l, it is not clear how to extend the original basis set to 
include more diffuse or tight functions when required. The ET and DET schemes 
do not share this Mz dependence, allowing an ET or DET basis to be augmented by 
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extra diffuse or tight functions more easily. We also note that the WT scheme was 
designed mainly to improve the distribution of larger exponents in GTF basis sets. 
An application of the DET scheme to Gaussian basis sets would be interesting. 
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